Same-Side Interior Angles Theorem

Examples & Non-Examples

Example	Example	Non-Example
	4 m	120° \(\ell \)
Since lines I and m are parallel, then angles 1 and 2 are supplementary because they are same-side interior angles.	Since lines I and m are parallel, then angles 3 and 4 are supplementary because they are same-side interior angles.	Since these are same-side interior angles, and they are supplementary, then lines I and m must be parallel.

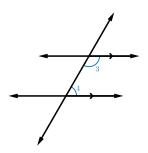
Definition

The Same-Side Interior Angles Theorem states:

"If two parallel lines are cut by a transversal, then the same-side interior angles are supplementary."

In simpler terms:

- When a **transversal** crosses two **parallel** lines,
- The two angles that are **on the same side** of the transversal and **inside** the parallel lines
- ullet Will always **add up to** 180°


Also known as:

• The Consecutive Angles Theorem

Example:

If lines l| |m, and a transversal t crosses them:

• $\angle 3$ and $\angle 4$ are on the same side of the transversal and inside the lines \rightarrow Then: $\angle 3 + \angle 4 = 180^{\circ}$

