## **Corresponding Angles Converse**

# **Examples & Non-Examples**

| Example                                                                                            | Example                                                                                            | Non-Example                                                                                                         |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 60° \( \lambda \)                                                                                  | t 120° ℓ                                                                                           | $t$ $\ell$ $\ell$ $m$                                                                                               |
| Since these are corresponding angles, and they are congruent, then lines I and m must be parallel. | Since these are corresponding angles, and they are congruent, then lines I and m must be parallel. | Since lines I and m are parallel,<br>then angles 1 and 2 are congruent<br>because they are corresponding<br>angles. |

### **Definition**

#### The Corresponding Angles Converse states:

"If two lines are cut by a transversal and the corresponding angles are congruent, then the lines are parallel."

#### In other words:

- If a transversal crosses two lines,
- And the corresponding angles are equal in measure,
- Then the two lines must be parallel.

### Why it's useful:

This converse allows you to **prove** that two lines are **parallel** based on angle relationships. It's often used in geometric **proofs and reasoning**.

