Alternate Interior Angles Theorem

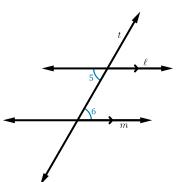
Examples & Non-Examples

Example	Example	Non-Example
	$\frac{t}{3}$	60° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Since lines I and m are parallel, then angles 1 and 2 are congruent because they are alternate interior angles.	Since lines I and m are parallel, then angles 3 and 4 are congruent because they are alternate interior angles.	Since these are alternate interior angles, and they are congruent, then lines I and m must be parallel.

Definition

The Alternate Interior Angles Theorem states:

"If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent."


In simple terms:

- When a transversal crosses two **parallel** lines,
- The **alternate interior angles** (on opposite sides of the transversal and **between** the two lines)
- Are always equal in measure.

Example:

If line l| |m, and transversal t intersects them, then:

• Angle 5 and angle 6 form a pair of alternate interior angles, and angle 5 ≅ angle 6.

